APPENDIX D

MANUFACTURER'S SPECIFICATIONS

HOWE GASTMEIER CHAPNIK LIMITED 2000 Argentia Road Plaza 1, Suite 203 Mississauga, ON L5N 1P7 Canada

> Tel: (905) 826-4044 Fax: (905) 826-4940

November 21, 2011

Janos Rajda, P. Eng. SMA Solar Technology Canada, Inc.

Via email: <Janos.Rajda@SMA-America.com>

Re: Sound Level Predictions for Inverter Enclosure with Two SC500HE-US Power Inverter Units

Dear Janos,

HGC Engineering was retained by SMA Solar Technology Canada ("SMA") to determine sound levels emitted by an electrical inverter enclosure (SMA type MV-PP-US-04:ZD22111) containing two SC500HE-US inverter units. The sound level predictions were conducted for a mitigated and unmitigated enclosure configuration, and were based on sound data for an SC500HE-US inverter unit and engineering drawings provided by SMA.

For the unmitigated enclosure configuration, the wall and roof assemblies were understood to be sandwich panels consisting of 18 gauge solid steel sheets separated by a 3 inch deep cavity filled with fibreglass insulation.

The mitigated configuration was assumed to include perforated steel on the inner side of the wall sandwich panel, instead of solid steel material. Additionally, each inverter air exhaust was assumed to be equipped with a rectangular and acoustically lined duct. A pair of lined ducts was assumed to be attached vertically on the outside of the enclosure wall, each connected to an inverter air exhaust located approximately 0.4 metres above grade. The air would then exhaust in the horizontal direction through a louver at the top of the duct, located at the roof level, approximately 2 metres above the original exhaust opening. The width and the height of the duct were assumed to be 1150 mm and 200 mm, respectively. The acoustical lining inside the ducts was assumed to be 25 mm thick.

Using the established engineering prediction methods, sound levels were predicted of the inverter exhaust fans, the louvered air intake in the door, as well as sound emanating through the walls and roof assemblies. Total sound power levels of these sources are expressed for both the mitigated and unmitigated configurations in the table below as linear weighted octave band spectrums and A-weighted overall sound power levels.

November 21, 2011

Table 1: Estimated Sound Power Level – Enclosure With Two SC500HE-US Inverter Units (dB)

()											
Octave Band Centre		a series and	and the state					and the second second	Overall A-		
Frequency (Hz)	63	125	250	500	1000	2000	4000	8000	weighted		
Unmitigated	107	95	93	87	78	70	61	68	89		
Mitigated	102	87	80	69	60	52	43	50	79		

Please note that the sound data provided by the manufacturer appears to be approximate, in that the measurements were not conducted in full accordance with any of the widely accepted test standards (e.g. ISO 3744) and there were a number of minor inconsistencies in the quoted levels. Since the calculations of the enclosure sound power level are based on the data from the inverter manufacturer, any uncertainties in that data will affect the calculated outdoor sound levels commensurately.

Trusting this is satisfactory, do not hesitate to contact the undersigned, if you have any questions.

Yours truly, Howe Gastmeier Chapnik Limited Petr Chocensk, PhD, (Civ.Eng.)

www.hgcengineering.com

MV POWER PLATFORM 1.0 / 1.25 / 1.4 / 1.5 / 1.6 MW

Turnkey

- Modular power solution allows for rapid field deployment
- Conversion, distribution and control functions included
- Customizable service options

Innovative

- Based on award-winning SMA Sunny Central technology
- Leading grid management
- functions available

Secure

- Renowned SMA manufacturing standards ensure long term operation
- Diverse service options address project-specific needs

Flexible

- Available as an open platform, with a canopy shade or as a full steel enclosure
- Can be installed on a concrete slab, piers or vault

MV POWER PLATFORM 1.0 / 1.25 / 1.4 / 1.5 / 1.6 MW

Modular utility-scale power solution

The SMA MV Power Platform–available as an open, shaded or enclosed structure–provides the most cost-effective way to modularly install large-scale PV power converters. These 1.0-1.6 megawatt medium-voltage turnkey power solutions include two Sunny Central inverters; a medium-voltage transformer; optional DC or AC/DC disconnect cabinets; and a control and supply panel for power distribution to local loads and (optionally) field tracker motors. They also feature easy integration with installer SCADA equipment; a modular, steel base with all component interconnection cabling; and a convenient plug-and-play installation scheme. Designed for Seismic Zone D applications, all configurations can be deployed for temperatures down to -40 °C. Each configuration can also be installed on a concrete slab, vault or piers for maximum flexibility.

		SAMPLE CON	FIGURATIONS	
Technical data	MVPP	1.0 MW	MVPP 1.5 MW	MVPP 1.6 MW
Technical data	600 V DC	1000 V DC	1000 V DC	1000 V DC
Input (DC)				
Max. DC power	1013 kW	1120 kW	1796 kW	1796 kW
MPP voltage range (@77°F/122°F at 60Hz)	330 V 600 V / 330 V 600 V a)	449 V 820 V / 436 V 820 V aj	609 V 820 V / 554 V 820 V a	641 V 820 V / 583 V 820 V aj
Rated input voltage	380 V	480 V	595 V	620 V
Max. DC voltage	600 V	1000V / 1100 V b)	1000V / 1100 V b)	1000V / 1100 V b)
Max. DC input current	3200 A	2500 A	2800 A	2800 A
Number of independent MPP inputs	2	2	2	2
Number of fused DC inputs	18	18 / 64 (Optiprotect)	18 / 64 (Optiprotect)	18 / 64 (Optiprotect)
Output (AC)				
Nominal AC power	1000 kVA @113 °F	1000 kVA @122 °F	1500 kVA @122 °F	1600 kVA @122 °F
Maximum AC power	1000 kVA @113 °F	1100 kVA @77 °F	1650 kVA @77 °F	1760 kVA @77 °F
Nominal AC voltage options	12.47 kV; 13.8 kV; 20.6 kV; 24.9 kV; 27.6 kV; 34.5 kV	12.47 kV; 13.8 kV; 20.6 kV; 24.9 kV; 27.6 kV; 34.5 kV	12.47 kV; 13.8 kV; 20.6 kV; 24.9 kV; 27.6 kV; 34.5 kV	12.47 kV; 13.8 kV; 20.6 kV; 24.9 kV; 27.6 kV; 34.5 kV
Total Harmonic Distortion of grid current	< 3 % @ nominal power			
Grid frequency	60 Hz	50 Hz / 60 Hz	50 Hz / 60 Hz	50 Hz / 60 Hz
Power factor (adjustable)	0.90 _{lead} - 0.90 _{lag}			
Transformer vector group	Dy1y1	Dylyl	Dy1y1	Dylyl
Transformer no load taps	±2.5 % & ±5.0 %	±2.5 % & ±5.0 %	±2.5 % & ±5.0 %	-5.0 %; -2.5 %; +3.5 %; +7.0 %; +10.5 %; +14.0 % c)
Transformer cooling type	KNAN	KNAN	KNAN	KNAN
Power consumption				
Internal consumption in operation (inverter + MV-transformer)	< 3400 VA + < 12 kVA	< 3000 VA + < 12 kVA	< 3000 VA + < 19.2 kVA	< 3000 VA + < 19.2 kVA
Standby consumption (inverter + MV-transformer)	< 220 VA + < 1500 VA	< 200 VA + < 1500VA	< 200 VA + < 2200 VA	< 200 VA + < 2200 VA
Supply via internal PV power /external power supply / green power	0/0/●	0/0/●	0/0/●	0/0/●
External auxiliary supply voltage	208 V; 480 V; 600 V			
Efficiency				
Max. efficiency / European efficiency / CEC efficiency inverter	98.60% / 97.90% / 98.00%	98.60% / 98.40% / 98.50%	98.60% / 98.40% / 98.50%	98.60% / 98.40% / 98.50%
Max. efficiency / European efficiency / CEC efficiency transformer	TBD / TBD / TBD			

OPEN CONFIGURATION

		SAMPLE CON	FIGURATIONS	
* 1 * 11.	MVPP	1.0 MW	MVPP 1.5 MW	MVPP 1.6 MW
Technical data	600 V DC	1000 V DC	1000 V DC	1000 V DC
Protection rating and ambient conditions				
Protection rating	NEMA 3R	NEMA 3R	NEMA 3R	NEMA 3R
Operation temperature range @ nominal power	-13 °F +113 °F	-4°F+122°F	-4°F +122°F	-4°F+122°F
Storage temperature standard / low temperature option	-13°F +140°F / -40°F +140°F	-4°F +140°F / -40°F +140°F	-4°F +140°F / -40°F +140°F	-4°F +140°F / -40°F +140°F
Relative humidity	15 % 95 %	15 % 95 %	15 % 95 %	15 % 95 %
Snow load (psf)	>40	>40	>40	>40
Wind load (mph)	>110	>110	>110	>110
Fresh air consumption (CFM)	3531.6	3531.6	3531.6	3531.6
Max. altitude above sea level (m)	2000	2000	2000	2000
Design lifetime (years)	>20	>20	>20	>20
Compliance and certificates				
Seismic rating according UBC sec. 1632 and IBC sec. 1613 $^{\rm d}$	Site class D, Ss =2.0g, S1=1.0g			
NEC 2011 / OSHA 1910	• / •	• / •	• / •	• / •
PE certificate on mechanical, electrical, seismic for California / other state	• / 0	• / 0	• / 0	•/0
Features				
Disconnect Unit	0	0	0	0
AC circuit breakers located in inverter / Disconnect Unit	• / 0	• / 0	•/0	• / 0
Project specific power supply for tracker motors etc.	0	0	0	0
Auxiliary power fusible disconnect switch / overvoltage protection	• / 0	• / 0	• / 0	• / 0
Customer SCADA system compartment e)	34" x 30" x 12", Supply: 120V/60Hz/max 250W			
On platform	2x 120V/ max. 250W each			
Transformer alarm contacts: Thermo / Pressure / Fluid level	•/0/0	•/0/0	•/0/0	•/0/0
Transformer oil containment	0	0	0	0
Delivery FCA/on site	• / 0	• / 0	• / 0	• / 0

CANOPY CONFIGURATION

		SAMPLE CON	SAMPLE CONFIGURATIONS			
Tashuisal data	MVPP	1.0 MW	MVPP 1.5 MW	MVPP 1.6 MW		
Technical data	600 V DC	1000 V DC	1000 V DC	1000 V DC		
Platform design						
Open including Disconnect Units						
Width / Height / Depth	29′ / 8′9″ / 12′	29' / 8'9" / 12'	29′ / 8′9″ / 12′	29′ / 8′9″ / 12′		
Weight (lb)	<39,000	<39,000	<39,000	<39,000		
Open excluding Disconnect Units						
Width / Height / Depth	24' / 8'9" / 12'	24' / 8'9" / 12'	24' / 8'9" / 12'	24' / 8'9" / 12'		
Weight (lb)	<34,000	<34,000	<34,000	<34,000		
Canopy including Disconnect Units						
Width / Height / Depth (roof)	31′ / 10′6″ / 14′	31' / 10'6" / 14'	31' / 10'6" / 14'	31′ / 10′6″ / 14′		
Weight (lb)	<42,000	<42,000	<42,000	<42,000		
Canopy excluding Disconnect Units						
Width / Height / Depth (roof)	26' / 10'6" / 14'	26' / 10'6" / 14'	26' / 10'6" / 14'	26' / 10'6" / 14'		
Weight (lb)	<37,000	<37,000	<37,000	<37,000		
Enclosure including Disconnect Units						
Width / Height / Depth	32′ / 10′6″ / 12′	32' / 10'6" / 12'	32' / 10'6" / 12'	32′ / 10′6″ / 12′		
Weight (lb)	<48,000	<48,000	<48,000	<48,000		
Enclosure excluding Disconnect Units						
Width / Height / Depth	27' / 10'6" / 12'	27' / 10'6" / 12'	27' / 10'6" / 12'	27' / 10'6" / 12'		
Weight (lb)	<43,000	<43,000	<43,000	<43,000		
• Standard features O Optional features – Not available	9					
Type designation	MV-1000HE-US	MV-1000CP-10	MV-1500CP-10	MV-1600CP-10		

a) @ 1.05 U_{ACnom} and cos ϕ = 1 b) Standard: 1000 V DC, optional 1100 V DC with a start-up < 1000 V DC

c) Reduction from 1600 kVA to 1400 kVA in 40 kVA steps possible to balance module degradation

d) Pier height 3 ft max., mounting via wedge anchors included in delivery e) Suitable to -13 °F ... +140 °F, has to include buffer module

ENCLOSED CONFIGURATION

SMART GRID MANAGEMENT INCLUDED

SMA inverters in the MV Power Platform can fulfill the following grid management specifications with:

grid voltage losses. Using the monitored dynamic grid support, SMA inverters can feed in immediately after short-term voltage losses—as long as the nominal voltage exceeds fixed values.

SERVICE FOR POWER PLANT SOLUTIONS

With a PV plant's expected service life exceeding 20 years, careful consideration must be given to not just the technologies used but also the reliability and durability of a system's components. Likewise, a comprehensive plan must be in place for the maintenance and operation of the plant. SMA Service for PV power plants addresses these needs and ensures optimum inverter availability-providing integrators, investors and utilities with the greatest security possible.

SMA also understands that every PV power plant is different and requirements vary. That's why we developed a modular service approach specifically designed for large power plants. This allows our customers to define individual service packages that best meet their needs. Approaching 100 service locations worldwide, SMA Service guarantees outstanding local customer support through a variety of customizable packages.

Maintenance

To optimize system performance, SMA performs controls, cleaning and parts replacement at regular intervals. This preventative maintenance is important for long term operation.

Spare parts warranty

Whether electronic or mechanical, we guarantee the availability of all components over the duration of the complete system life cycle. Our customers can be confident that even as technologies evolve, SMA's support will be constant. This guarantee also provides additional cost security for the operational life of the inverter solution.

Diagnostics and repair

Beginning with remote service, which often eliminates on-site assistance, to First Level, (diagnostics and small repairs), or Second Level Support, (comprehensive repairs), SMA offers the proper service plan for our customers' needs. Customers can optionally administer First Level Support themselves. With local staff to assist, SMA Service quickly provides the appropriate response to any situation.

Inverter availability

SMA inverters lead the industry. Our customers know our world-class manufacturing and high-quality components result in a superior solution. To fully protect investment security, SMA offers two inverter uptime guarantees: 98 or 99 percent. With these guarantees, we will reimburse the customer for the difference between the actual and agreed-upon inverter uptime. With warranty periods up to 25 years in length, SMA can also guarantee our solution's performance for the life of the PV plant.

Need more information? Call SMA Power Plant Solutions at +1 888 476 2872 to hear more.

Enclosure MV Power Platform including Disconnect Units

1.1.2 Compliance Standards

S tandard	Name	Index				
ANSI/ IEEE	American National Standards Insti- tute / Institute of Electrical and Elec- tronics Engineers	ANSI A117.1, 2009 Edition : Accessible and Usable Buildings and Facilities				
ASCE	American Society of Civil Engineers	ASCE/SEI 7-05				
		- ASTM A36/A36M - Standard Specifica- tion for Carbon Structural Steel - ASTM A90IA90M - Standard Test Me-				
		thod for Weight (Mass) of Coating on Iron and Steel Articles with Zinc or Zinc-				
		Alloy Coatings - ASTM A525 - Standard Specifications				
		for General Requirements for Steel Sheet, Zinc-Coated (Galvanized) by the				
		Hot-Dip Process - ASTM B 117 - Standard Practice for				
6 ST M	American Society for Testing and	Operating Salt Spray (Fog) Testing Apparatus				
Asim	Materials	- ASTM D714 - Standard Test Method for Evaluating Degree of Blistering of				
		Paints				
		 ASTM D 1654 - Method for Evaluation of Painted or Coated Specimens 				
		Subjected to Corrosive Environments				
		- ASTM D2244 - Standard Practice for Calculation of Color Tolerances and				
		Color Differences from Instrumentally Measured Color Coordinates				
		- ASTM E 84-04 - Standard Test Method for Surface Burning Characteristics of				
		Building Materials National Fire Protec- tion Association (NFPA)				
AWS	American Welding Society	ANSI/AWS 2009				
IBC	International Building Code	International Building Code (IBC), 2009 Edition				
IEC	International Electrotechnical Com- mission	IEC 2000				
ISA	Instrumentation Society of America	ISA Documentation Standards and User Resources for Industrial Automation and Control Systems, 2nd Edition				
NEC	National Electrical Code	2008 and 2011				
NEMA	National Electrical Manufacturers Association	NEMA Standards Publication 250-1997				
NESC	National Electrical Safety Code	NESC 2007				
NETA	National Electrical Testing Associa- tion	ANSI/NETA ATS-2009				
		- NFPA 70 - National Electrical Code (NEC)				
		- NFPA 70E – Standard for Electrical Safety in the Workplace				
		- NFP A 101 - Life Safety Code				
NFPA	National Fire Protection Association	 NFPA 255 - Standard Method of Test of Surface Burning Characteristics of 				
		Building Materials				
		- NFP A 496 - Standard for Purged and Pressurized Enclosures for Electrical				
	One and the factor of the fill	Equipment				
OSHA	Occupational Safety and Health Administration	USRA 1910				
UL	Underwriters Laboratories	UL 2009				
UMC	Uniform Mechanical Code	2009 Uniform Mechanical Code				

1.2 Mechanics

Overall dimensions:

1.2.1 itional Enclosure platform mechanics With Disconnect Units:

Without Disconnect Units:

1.3 Transportation and Installation

1.3.1 Transport:

- MV Power platform is delivered ex works including loading
- Optional delivery to site possible
- (...text from installation requirements that has already been set up)

Truck has to be a Double Droop Trailer (low boy) suitable to carry the weight and dimensions (especially width and height) of the MV Power Platform.

Unloading:

- 6 lifting lugs are included upon delivery which have to be assembled to the frame prior to unloading procedure
- The customer has to organize an appropriate crane to lift the MV Power Platform. Please contact a crane supplier to identify the required crane properties.
- Lifting to be done as shown in the drawings below

SMA Solar Technology AG

1.3.2 Installation:

Mechanical:

- Soil must be suitable and hard enough to carry the weight of the MVPP
- Typical mounting is done on concrete piers od a concrete pad, regards ACI-guidelines and regulations for concrete basement design

- MVPP frame has to be connected via wedge anchors and pressure plates. Both are included upon delivery
- Maximum pier height is 3' to ensure seismic zone 4 rating of whole system assembly (MVPP including mounting) (DANGER and details from inst. Requ.)

Electrical connection:

- Pad mounting: All cables to be conducted through pad, appropriate sealing to be applied by customer.
- Pier mounting: All cables to be lead to the platform bottm via metal conduits. Refer to NFPA 70 for details. Conduit length has to include pier height + 15" power platform frame height.

With Disconnect Unit

Without Disconnect Unit

(new drawing: same as above without Disconnect Unit openings, DC connection all in inverter)

• The DC connection has to be done in accordance to the installation manual of the Disconnect Unit and the inverter. Connection can be done via cable lugs only. The screws and washers are included upon delivery, ths customer has to provide appropriate cabel lugs. See installation manual of inverters for details.

SMA Solar Technology AG

- The auxiliary power and communication cable connection has to be done in accordance to the MVPP installation manual. Refer to this manul for details.TBD
- The AC connection to the MV transformer has to be done in accordance to the MVPP installation manual. Refer to this manual for details. TBD

ltem	Description	Specification	Comment
1	Dimensions of MV-PP with enclosure	Compliance with drawings	See drawing <mark>65-1518502002</mark>
			65-1518507002
			65-1518505002
			65-1518513002
			<mark>65-1518517002</mark>
			<mark>65-1518515002</mark>
2	Enclosure design	The enclosure comprises a	See drawing
		walls and roof. The interior walls	65 15 185 17002
		are sheathed. The enclosure is permanently connected to the main steel frame. The roof pitch is 2°.	05-1318317002
3	Material	Enclosure framework: Painted steel	
		Indoor wall panels: Galvanized sheet	
		Outdoor wall panels: Galva- nized and painted steel	
		Roof panels: Galvanized and painted steel	
		Louvers: Aluminum	
4	Insulation	The walls and the roof of the en- closure are to be insulated by mineral wool or fiber glass bat- ting to reduce external heating and noise pollution.	
		Thermal performance:	
		R-value: 6 Thickness: 51 mm (2 inch) Low flammability Non containing asbestos Non-wicking	
5	Entrance and exit	The enclosure has two doors with	See drawing
		De the short side of the angle	65-1518505002
		On the short side of the enclo-	

3.2.2 Additional Mechanical Requirements for Option "Enclosure"

Specification

Transformer Performance Specification

For: Amed	;			Date:	8/24/2011
Quote:	10Q1325733	Item:	10	Spec:	

Rating								
Туре	Substation Non-Auto	Class	H Windi	ng	X Wind	ing	Y Win	ding
Phase	3		240	kV	34.5	kV	-	
Hertz	60	ONAN	65000	KVA	65000	KVA	-	KVA
Temp Rise	65 C	ONAF	85000	KVA	85000	KVA	-	KVA
Insulating Type	Mineral Oil	ONAF	110000	KVA	110000	KVA	-	KVA

Additional Tap Volta	ages
H Winding (kV)	+16, -16 x 1.25%, OLTC Full Capacity Below Nominal
X Winding (kV)	No Taps
Y Winding ()	-

Connections for	or Operation								
Transformers in Bank	To Transform from	Phase	Connected	To Transform from	Phase	Connected	To Transform To	Phase	Connected
1	240 kV	3	Wye	34.5 kV	3	Delta	-	3	-

Dielectric Tests				Insulation Le	Insulation Levels		
	H Winding	95	kV		Basic Lightning		
Applied Voltage (To other windings and ground)	X Winding	95 kV 95 kV 95 kV - kV - kV - kV - kV - H li xli xli vel (L-G) 315 kV X n Y li	ITEMS	Impulse Insulation Level (BIL kV)			
Applied Voltage (To other windings and ground) X Winding Y Winding	-	kV					
	1 Thirding			H line	900		
	Enhancement level / 7200 Cycle (L.C.)	260	LV/	H neutral	250		
Induced Veltage		300	ΓV	X line	250		
muudeu voltage	ed Voltage (To other ndings and ground) X Winding Y Winding Induced Voltage Enhancement level / 7200 Cycle (L-G One hour level (L-G)	015		X neutral	-		
		315	٨V	Y line	-		

Loss Data based on	NL (NL @ 20C, LL @ 85C								
Based on loading at	240	kV	То	34.5 k	V			Re	gulation	at
Winding Load KVA	Н	110	000	Х	110000		Y	_ 240 kV	/	34.5 kV
			LoadLosses			116.3 kW	1	110000		KVA
No Load Loss	60 k	W		Total Loco		333 kW		Power	%	% Load
				TULAT	_035	555 KW		Fadtor	Reg	70 E000
								1.0	1.03	100
								0.8	7.69	100

Auxiliary Losses included in abo	(Not ove)	Pe	ercent Exc	iting Current						
	,	10	0% V	110% V						
4.5 kW		(0.08	0.20						
Average Sound Leve	əl									
dB(A)		Class								
81			ONAN							
83		ONAF								
84		ONAF								
Percent Impedance	Voltage									
% IZ	Betwe Windin	en Igs	/	At KVA						
7	HV-L	V		65000						

Mechanical Data Not for Construction Purposes	
Drawing	
Height (A) 336 in	
Length (B) 388 in	
Width (C) 228 in	
Height over Cover (D) 187 in	
Untanking (Plus Slings) (E) <u>331 in</u>	
Shipping Height 189 in	
Shipping Width 124 in	
Shipping Length 292 in	
Oil Preservation Cops	
Weights (approximate) (lbs)	
Core and Coils 167924 lbs	
Tank and Fittings 63094 lbs	
Fluid 14952 gal 112140 lbs	
Total Weight 343179 lbs	
Untanking Weight 167924 lbs	
Shipping Weight 205407 lbs	
Shipped in Dry Air	

APPENDIX E

NOISE CALCULATIONS

CONVERSION OF SOUND PRESSURE LEVELS TO SOUND POWER LEVELS

Project Name:	Sol-Luce Kingston PV Energy Project
Project Number:	TC111406
Location:	Kingston ON

	A-WEIGHTING (dB) - Applied to total PWL													
-26.2	-16.1	-8.6	-3.2	0.0	1.2	1.0	-1.1							
1/4 WAVELENGTH CRITERION (m)														
1.361	0.686	0.343	0.172	0.086	0.043	0.021	0.011							
Octave Band Sound Power Level Data														
	(11)													

	A-WEIGHTING (dB) - Applied to total PWL													
-26.2	-16.1	-8.6	-3.2	0.0	1.2	1.0	-1.1							
1/4 WAVELENGTH CRITERION (m)														
1.361	0.686	0.343	0.172	0.086	0.043	0.021	0.011							
Octave Band Sound Power Level Data														

Source	Source	Calc Type ^[1]	SPL R Distanc	ef Lengt	h ^[3] Area	Partition Coefficien	n Net nt Surface	Spectral			Octave	Band Sound (dB) ^[5]	l Pressure I	evel Data.			Total	Sound Po Adju	ower Level stment			Octave	Band Soun (d	l Power Le B)	vel Data			Total
ID	Description		(S or (C) (C on	ly) (A only)	(S or C)	Area ^[6]	Weighting	63	125	250	500	1000	2000	4000	8000			Purpose	63	125	250	500	1000	2000	4000	8000	l
		(A, C, or §	5) (m)	(m) (m ²)	(%)	(m ²)	(A or Flat)									(dBA)	(dB)										(dBA)
Sub_Transf	Substation Transformer	А			162.2		162.2	Flat	86.6	88.6	83.6	83.6	77.6	72.6	67.6	60.6	84.0			108.7	110.7	105.7	105.7	99.7	94.7	89.7	82.7	106.1
Notes:																												

Notes:
 Calc Type of C, A, or S refer to the source geometry, and represent Cylindrical, Area, or Spherical sources, respectively.
 SPL Ref Distance refers to the radial distance from the microphone to the acoustic centre of a spherical source or the symmetrical axis of a cylindrical source.

3. Length refers to the length of a cylindrical source or line source. A length of 1.0 m may be used to define a PWL per metre.
 4. Net surface area refers to surface area corrected for partition coefficient. Partition coefficient applies only to spherical and cylindrical geometries. Sound power level is estimated using an area correction 10 log A.

5. Tansformer Spectral Shape for 84 dBA overal.

CONVERSION OF SOUND PRESSURE LEVELS TO SOUND POWER LEVELS (MVPP TRANSFORMER)

Project Name:	Sol-Luce Kingston PV Energy Project
Project Number:	TC111406
Location:	Kingston ON

-26.2		-1
1.361		0.
	-26.2 1.361	-26.2 1.361

G	G	Calc	SPL F	ef Lengt	h ^[3] Aı	Area I	Partition	Net				Octave 1	Band Sound	Pressure L	evel Data				Sound P	ower Level			Octave	Band Soun	d Power Le	vel Data			
Source	Source	1 ype	Distanc	e		C	oefficient	Surface	Spectral				(UD)					Total	Adju	stment				(0	1B)				Total
ID	Description		(S or	C) (C or	ly) (A d	only)	(S or C)	Area ^[6]	Weighting	63	125	250	500	1000	2000	4000	8000			Purpose	63	125	250	500	1000	2000	4000	8000	1
		(A, C, or	S) (m)	(m) (n	m ²)	(%)	(m ²)	(A or Flat)									(dBA)	(dB)										(dBA)
MVPP_Trans	Inverter Transformers	А			45	45.3		45.3	Flat	60.6	62.6	57.6	57.6	51.6	46.6	41.6	34.6	58.0			77.2	79.2	74.2	74.2	68.2	63.2	58.2	51.2	74.6
Matan																													

2. SPL Ref Distance refers to the radial distance from the microphone to the acoustic centre of a spherical source or the symmetrical axis of a cylindrical source.

3. Length refers to the length of a cylindrical source or line source. A length of 1.0 m may be used to define a PWL per metre.

4. Net surface area refers to surface area corrected for partition coefficient. Partition coefficient applies only to spherical and cylindrical geometries. Sound power level is estimated using an area correction 10 log A.

5. Tansformer Spectral Shape for 58 dBA overal.

	A-WEIGH	TING (dB)	- Applied to	total PWL		
6.1	-8.6	-3.2	0.0	1.2	1.0	-1.1
	1/4 WA	VELENGT	H CRITERI	ON (m)		
686	0.343	0.172	0.086	0.043	0.021	0.011
	Octave	Band Soun	d Power Le	vel Data		

Notes: 1. Calc Type of C, A, or S refer to the source geometry, and represent Cylindrical, Area, or Spherical sources, respectively.

UNMITIGATED MVPP SOUND POWER LEVELS

Project Name:Sol-Luce Kingston PV Energy ProjectProject Number:TC111406Location:Kingston ON

			Octave B	Band Sound	Pressure L	evel Data				Data
Source Description				(dB)					Total	Source
	63	125	250	500	1000	2000	4000	8000	(dBA)	
Inverter Sound Power Levels Tranformer Sound Power Levels	107.0 77.2	95.0 79.2	93.0 74.2	87.0 74.2	78.0 68.2	70.0 63.2	61.0 58.2	68.0 51.2	89.0 74.6	HGC Report CSA C227.4
Combined Sound Power Levels	107.0	95.1	93.1	87.2	78.4	70.8	62.8	68.1	89.2	Used in Cadna

MITIGATED MVPP SOUND POWER LEVELS

Project Name:Sol-Luce Kingston PV Energy ProjectProject Number:TC111406Location:Kingston ON

			Octave B	and Sound	Pressure L	evel Data				Data
Source Description				(dB)					Total	Source
	63	125	250	500	1000	2000	4000	8000	(dBA)	
Inverter Sound Power Levels Tranformer Sound Power Levels	102.0 77.2	87.0 79.2	80.0 74.2	69.0 74.2	60.0 68.2	52.0 63.2	43.0 58.2	50.0 51.2	78.4 74.6	HGC Report CSA C227.4
Combined Sound Power Levels	102.0	87.7	81.0	75.3	68.8	63.5	58.3	53.6	79.9	Used in Cadna